16 Optimale Zustandsschätzung: Kalman-Filter

Zoltán Zomotor

Versionsstand: 2. April 2015, 9:28

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Bitte hier notieren, was beim Bearbeiten unklar geblieben ist:

Inhaltsverzeichnis

1	Einführung	2
2	Das zeitinvariante Kalman-Filter	3
3	Beispiel: Optimale Zustandsschätzung für gedämpften Oszillator 3.1 Simulationsbeispiel 3.2 Einfluss von Q und R	4 6 6
4	Dualität von optimaler Regelung und Zustandsschätzung	7

1 Einführung

Die Struktur des Kalman-Filters entspricht der üblichen Beobachterstruktur

mit einem stochastischen Modell der Regelstrecke

Das Kalman-Filter beruht auf demselben Ansatz wie der Beobachter:

nur wird jetzt die Rückführmatrix \boldsymbol{L} in anderer Weise bestimmt.

5

6 -

Für eine einfache Lösung des Schätzproblems muss folgendes angenommen werden: Rauschprozesse $\boldsymbol{w}(t), \boldsymbol{v}(t)$ weiß und unkorreliert, formal:

 $\boldsymbol{w}(t)$: Prozessrauschen, Kovarianz:

4

 $\boldsymbol{v}(t):$ Messrauschen, Kovarianz:

Der Schätzfehler ϵ des Beobachters ist gegeben durch $\epsilon = x - \hat{x}$, wobei \hat{x} die Schätzung von x ist. Die Rückführmatrix L soll nun so gewählt werden, dass der mittlere quadratische Schätzfehler minimal wird:

Als optimale Rückführmatrix erhält man

16

12

13

mit der Kovarianz des Schätzfehlers P als Lösung der Matrix-Riccati-Differentialgleichung:

2 Das zeitinvariante Kalman-Filter

 $\begin{array}{c|c} & & & \\$

Die Lösung \boldsymbol{P} führt zur konstanten Kalman-Verstärkung

14 -

Eigenschaften des zeitinvarianten Kalman-Filters:

• Optimalität, das heißt

für mittelwertfreies, weißes Mess- und Prozessrauschen.

- Erwartungstreue Schätzung
- Dualität zum LQ-Regulator
- Separationstheorem, wie bei jedem Beobachter
- Lösung einer Riccati-Gleichung erforderlich

Bemerkung: Anstelle einer experimentellen Bestimmung der Kovarianzfunktionen Q und R werden diese Matrizen häufig diagonal angenommen und als Tuninparameter ($Q \succeq 0, R \succ 0$) verwendet.

16 -

3 Beispiel: Optimale Zustandsschätzung für gedämpften Oszillator

 \boldsymbol{w}

17

• Zustandsdifferentialgleichungen:

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\alpha \end{bmatrix} \boldsymbol{x} + y = \begin{bmatrix} 0 & 1 \end{bmatrix} \boldsymbol{x} + v$$

- Kovarianzmatrix für das Prozessrauschen
 $\boldsymbol{w}:$
- Messrauschen: $\mathbf{R} = r$.
- Symmetrischer Ansatz für $\boldsymbol{P}:$

Einsetzen in die Matrix-Riccati-Differentialgleichung:

Berechnung:

18 -

Es ergeben sich die folgenden drei Differentialgleichungen für p_1 , p_2 und p_4 :

Mit Lücke 8 ist die optimale Rückführmatrix gegeben durch:

16

20

21

27

Für das zeitvariante Kalman-Filter ist also die numerische Lösung der gekoppelten Differentialgleichungen für p_1 , p_2 und p_4 notwendig. Weil beobachtbar und damit auch

detektierbar ist, konvergieren die Werte von p_i zu konstanten Werten und das zeitinvariante Kalman-Filter kann verwendet werden. Für das zeitinvariante Kalman-Filter lässt sich L explizit berechnen:

Die Nullstellen der ersten Gleichung sind |, allerdings führt nur |auf eine positiv definite Matrix P. Entsprechend lautet die gesuchte Lösung

24

25

und die konstanteRückführmatrix ist gegeben durch

3.1 Simulationsbeispiel

 $\left(16\right)$

Simulations beispiel für $\alpha=0.1,\,\omega_n=2.5,\,\boldsymbol{Q}(2,2)=q=5$ und $\boldsymbol{R}=r=1$

> Numerisch integrierte Lösungen p_i ($\alpha = 0.1, \omega_n = 2.5$) 2 2 1 2 1 1 0 2 0 2 4 6 8 10 12 14

Die Werte $p_i(t)$ konvergieren gegen stationäre Werte, die Verwendung eines zeitinvarianten Kalman-Filters ist gerechtfertigt.

 \Rightarrow Filterung der stark verrauschten Messwerte.

 \Rightarrow Schätzwerte konvergieren schnell gegen Zustandswerte

3.2 Einfluss von Q und R

Simulationsbeispiel mit einem 10x größerem $\mathbf{R} = 10r = 10$ Ausgangswerte, R = 10Zustände und Schätzwerte, R = 10

durch das verhartnis von 12 und & Seeninussbar

16

32 ·

33

4 Dualität von optimaler Regelung und Zustandsschätzung

Vergleichen wir P(t) des Kalman-Filters in Lücke 9 mit $P_{LQR}(t)$ des LQ-Regulators

dann liegt folgender Schluss nahe: Das Kalman-Filter ist äquivalent zum LQ-Regulator für das duale System (F^*, G^*, H^*, J^*) mit

(Beachten Sie, dass beim LQ-Regulator die Matrix P gegen kleinere Zeiten hin integriert wird, daher der Vorzeichenwechsel.) Der praktische Vorteil dieser Dualität ist, dass dieselben Analysetools und numerischen Methoden auf beide Konzepte angewendet werden können.

